Skip to main content

Simple Dictionary Program in Python


Program to store student details in dictionary and find the average marks of the given student !

Python Program - dictionary.py

from __future__ import division
import sys

dct = {};
#get n - number of students
n = int(raw_input());
if ( n >= 2) and (n <= 10) :
        for i in range(0,n):
                #read student details
                info = raw_input()
                new_info = info.split()
                name = new_info[0]
                del new_info[0]
                dct[name] = []

                for j in range(0,3):
                        marks = float(new_info[j])
                        if ((marks >= float(0)) and (marks <= float(100))):
                                dct[name].append(marks)
                        else:
                                print("invalid marks for one of the student - >=0 and <= 100")
                                sys.exit(0)
        print "dictionary details :- %s" % str(dct)
        #retrive student details
        info = raw_input()
        marks = 0
        if (info in dct):
                for j in dct[info]:
                        marks += j

                print format(marks/3,'.2f')
        else:
                print("Student not found")

else:
        print("invalid n value - n >= 2 and n <= 10")
        sys.exit(0)

Comments

Popular posts from this blog

Sampling and FFT Size derivation in LTE

Sampling and FFT Size derivation in LTE Ts = 1 / (15000 x 2048) seconds, which corresponds to the 30.72 MHz sample clock for the 2048 point FFT used with the 20 MHz system bandwidth. In the frequency domain, the number of sub-carriers N ranges from 128 to 2048, depending on channel bandwidth with 512 and 1024 for 5 and 10 MHz, respectively, being most commonly used in practice. The sub-carrier spacing is ∆f = 1/T u = 15 kHz. The sampling rate is fs = ∆f · N = 15000 N. This results in a sampling rate that’s multiple or sub-multiple of the WCDMA chip rate of 3.84 Mcps: LTE parameters have been chosen such that FFT lengths and sampling rates are easily obtained for all operation modes while at the same time ensuring the easy implementation of dual-mode devices with a common clock reference. Sampling frequency is Multiple's of 2, For 15 Mhz Bandwidth - Sampling Frequency = 23.04 (6 * 3.84). FFT SIZE = S

C Programming Questions – Part 1

1. W hat do curly braces denote in C? Why does it make sense to use curly brac es to surround the body of a function?   Answer: The curly braces denote a block of code, in which variables can be declared. Variables declared within the block are valid only until the end of the block, marked by the matching right curly brace ’}’. The body of a function is one such type of block, and thus, curly braces are used to describe the extent of that block . 2.Describe the difference between the literal values 7, "7", and ’7 ’ ?   Answer: The first literal is integer 7.Second literal is null terminated string value '7'.Third literal is character '7' having ASCII character code (55). 3. Consider the statement double ans = 10.0+2.0/3.0−2.0∗2.0; Rewrite this statement, inserting parentheses to ensure that ans = 11.0 upon evaluation of this statement ? Answer: double ans = 10.0+2.0/ (( 3.0−2.0 ) ∗2.0 ) ; 4 .C

C Programming Questions - Part 2

1) How do you determine the size and range of the following data types ? char unsigned char short int unsigned int unsigned long float Ans:- limits.h header file defines the minimum and maximum range macros for each of the data types , sizeof(datatype) returns the number of bytes used by the datatype in current machine. 2) Write logical expressions that tests whether a given character variable c is lowercase letter uppercase letter digit white space(includes space,tab,newline) Ans:- lowercase letter = (c >= 'a' && c <= 'z') uppercase letter = (c >= 'A' && c <= 'Z') digit = (c >= '0' && c <= '9') white space(includes space,tab,newline) = (c == ' ' || c == '\t' || c == '\n') 3) Consider unsigned int val=0xCAFE; Write expressio